Cosmological Constant and Local Gravity

نویسندگان

  • José Bernabéu
  • Catalina Espinoza
  • Nick E. Mavromatos
چکیده

We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Λ > 0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein’s equations (due to a generalization of Birkhoff’s theorem) in the domain between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild-de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the physical energy density is positive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a "local" cosmological constant in Euclidean quantum gravity.

In 4D non-perturbative Regge calculus a positive value of the effective cosmological constant characterizes the collapsed phase of the system. If a local term of the form S′ =

متن کامل

Study of a Restricted Modified Gravity on astrophysical and cosmological scales

p { margin-bottom: 0in; direction: rtl; text-align: right; }p.ctl { font-size: 12pt; }a:link { color: rgb(0, 0, 255); } In this paper, we study a restricted modified gravity in which diffeomorphism symmetry is broken. We investigate the astrophysical implications of the model by using the corresponding gravitational potential. By using the weight function of the weak lensing , for the model,...

متن کامل

On a spacetime duality in 2 + 1 gravity

We consider 2 + 1 dimensional gravity with a cosmological constant, and explore a duality that exists between space-times that have the De Sitter group SO(3, 1) as its local isometry group. In particular, the Lorentzian theory with a positive cosmological constant is dual to the Euclidean theory with a negative cosmological constant. We use this duality to construct a mapping between apparently...

متن کامل

Quaternionic and Poisson-Lie structures in 3d gravity: the cosmological constant as deformation parameter

Each of the local isometry groups arising in 3d gravity can be viewed as the group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement, and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for Euclidean signature with positi...

متن کامل

Non-Local Modification of Gravity and the Cosmological Constant Problem

We propose a phenomenological approach to the cosmological constant problem based on generally covariant non-local and acausal modifications of four-dimensional gravity at enormous distances. The effective Newton constant becomes very small at large length scales, so that sources with immense wavelengths and periods — such as the vacuum energy— produce miniscule curvature. Conventional astrophy...

متن کامل

دسته‌ای از جوابهای دقیق گرانش با مشتقات بالاتر در چهار بعد

 In this paper we consider the action of higher derivative gravity up to the second order terms in the scalars made from the Ricci scalar, Ricci and Riemann tensors. We use the Bach- Lanczos identity of the Weyl tensor in four dimensions and show that the solutions of 4-dimensional Einstein equations with cosmological constant term in vacuum, which are known as Einstein metrics, satisfy the fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010